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Dynamic Structure Models for Scalar Flux
and Dissipation in Large Eddy Simulation

Sergei Chumakov∗ and Christopher J. Rutland†
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A new class of subgrid scale models (dynamic structure models) for large eddy simulation is proposed for subgrid
scalar flux and dissipation terms. The structure of the modeled terms is taken from the corresponding Leonard
terms by the use of the test filter size equal to the base filter size, and a particular form of the scaling factor
is proposed. The models are evaluated using available direct numerical simulation data. The evaluation results
compare well with viscosity and similarity models. The dynamic structure models have been found to be robust
and to work well under various conditions, including various test-to-base filter size ratios and filter skewnesses.
Models for both terms employ the subgrid scalar variance as a part of the scaling factor. It is possible not to model
the subgrid variance, but to find it via the evolution equation. A new form of the transport equation for subgrid
scalar variance that contains only one unclosed term is presented.

Nomenclature
Cδ = growth rate constant of the mixing layer
Cφ = triple correlation term
c = scaling coefficient in similarity model
ci = scaling coefficient vector
D = diffusion coefficient
E = relative modeling error
G(x) = filter function
k = subgrid scale (SGS) kinetic energy
Li j = Leonard term for momentum equation closure
Li,φ = Leonard term for scalar flux
Lχ = Leonard term for SGS scalar dissipation
r = velocity ratio in the mixing layer
S̄i j = resolved rate of strain tensor
Ti,φ = test-level SGS flux term for scalar φ
ui = velocity vector
var(φ) = variance of the flow variable φ in time
x = coordinate direction
xi = coordinate vector
y = coordinate direction
z = coordinate direction
αi = second moment of a filter
� = characteristic width of the base-level filter
�̂ = characteristic width of the test-level filter
�g = direct numerical simulation grid cell size
δ = mixing layer width
ε = SGS energy dissipation rate
η = self-similarity variable in the mixing layer
θφ = base-level SGS variance of the scalar φ
µT = turbulent viscosity
τi,φ = base-level SGS flux term for scalar φ
φ = flow variable
φ̄ = base-level filtering operation
φ̂ = test-level filtering operation
〈φ〉 = time-averaged variable φ
χφ = SGS dissipation term for scalar φ
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φ̄ = test-level SGS variance of the scalar φ̄
ω = source term due to chemistry

I. Introduction

L ARGE eddy simulation (LES) is based on the decomposition
of flow variables into resolved (filtered, large-scale) and un-

resolved [subgrid-scale (SGS)] components. The resolved part is
obtained by directly solving the filtered conservation equations,
whereas the effect of the unresolved part is modeled. The resolved
and unresolved scales are separated with a spatial filtering proce-
dure. For any flow variable φ, it is postulated that φ = φ̄ + φ′, where
φ̄ = φ ∗ G is the resolved part, φ′ = φ − φ̄ is the unresolved part, ∗
denotes convolution operation, and G is called a filter function. The
shape and size of G gives rise to the filter size �. The most common
type of filter function is a box, or top-hat function: G(x) = �−3 for
|x | < �/2, and G(x) = 0 otherwise.

Application of the filtering operation to any transport equation
gives rise to unclosed terms. Over the course of more than 30 years,
a multitude of models has been proposed and evaluated to close the
momentum transport equations.1 However, only a few models deal
with the terms that appear in scalar transport equations.

Consider the following transport equation for a scalar φ:

∂φ

∂t
+ ∂uiφ

∂xi
= ∂

∂xi

[
D

∂φ

∂xi

]
+ ω (1)

where D is the diffusion coefficient and ω is the source term that
may arise, for example, from chemistry. Application of the LES
filtering operation yields the LES transport equation

∂φ̄

∂t
+ ∂ ūi φ̄

∂xi
= ∂

∂xi

[
D

∂φ̄

∂xi

]
+ ω̄ − ∂τi,φ

∂xi
(2)

where τi,φ = uiφ − ūi φ̄ is the subgrid flux term. The hazards of
modeling the source term ω̄ are well known.2,3 Fewer models have
been developed for τi,φ .

The oldest and most popular type of models is the viscos-
ity, or Smagorinsky-type models, named after the pioneering
work of Smagorinsky.4 The general form of a viscosity model is
τi,φ ≈ −µT (∂φ̄/∂xi ). Various algorithms for calculation of the tur-
bulent viscosity µT have been proposed.5,6 The recent ones include
the dynamic determination of µT utilizing the Germano identity7

for scalar terms:

Li,φ = Ti,φ − τ̂i,φ (3)
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where Li,φ = ̂̄ui φ̄ − ̂̄ui
ˆ̄φ is the Leonard term for scalar flux, Ti,φ =

̂uiφ − ̂̄ui
ˆ̄φ is the test-level subgrid flux term, and superscript ̂

denotes the test filtering operation.
A more successful approach is used in similarity models that use

the Leonard term itself as a model for certain ratio of characteristic
lengths � and �̂. This class of models has been shown to perform
significantly better than viscosity-type models for the momentum
equation closure.8

A combined approach also has been investigated.9 The term τi,φ

was modeled as a linear combination of the Leonard term and
Smagorinsky model, which may be viewed as an analog of the lin-
ear combination model for momentum equation.10 Tests show that
this class of models perform better than the similarity model alone.
However, a priori knowledge of the flow is required to determine
the values of coefficients in the linear combination.

In the field of combustion modeling, considerable effort has been
spent in modeling two other scalar-related quantities:

θφ = 1

2
(φφ − φ̄φ̄) (4)

χ̄ = D
∂φ

∂xi

∂φ

∂xi
(5)

SGS scalar variance and SGS scalar dissipation rate. Although sev-
eral models can be found in the literature for the SGS scalar variance
θφ , we consider adding a separate transport equation for θφ to our set
of LES equations. The SGS scalar dissipation rate has been modeled
in several ways. The most common model is given by application
of traditional momentum methods11,12: χ̄ = Cθφ/τ , where τ is the
turbulent timescale obtained from momentum equation closure, and
C is an a priori constant. This model has been criticized and an alter-
native, more complex model with three terms has been proposed by
Girimaji and Zhou.13 The model contained one a priori scaling con-
stant. Subsequently, an effort was made to incorporate a dynamic
procedure to determine the constant.14 However, in a priori tests
with incompressible isotropic turbulence, it was found that the dy-
namic coefficient led to decreased accuracy relative to the constant
coefficient. Determination by the use of an assumed scalar spectrum
was attempted later with moderate improvement.15

We argue that it seems more appropriate to model the term χφ ,
defined in the following way:

χφ = D

[
∂φ

∂xi

∂φ

∂xi
− ∂φ

∂xi

∂φ

∂xi

]
(6)

rather than model χ̄ as it has been in the literature. The form of the
suggested model for χφ is motivated by the scale-similarity ideas,
and the particular form of the adaptive scaling factor is motivated by
the dynamic structure model for the SGS scalar flux term presented
later in the paper.

In this work, new models are presented for the SGS scalar flux
term τi,φ and SGS scalar dissipation term χφ . The models are evalu-
ated a priori with available direct numerical simulation (DNS) data
for nonreacting channel flow, Couette flow, and mixing layer. Then,
a posteriori evaluation is performed by implementation of the mod-
els in an LES code. An LES of a nonreacting incompressible mixing
layer was performed, and results were compared to those of DNS.

II. SGS Scalar Flux
The main idea of the dynamic approach consists of treating the

turbulent eddies as fractal-like structures. Thus, an extrapolation of
small-scale statistics is possible, given the knowledge of large-scale
fields. This procedure requires another filtering operation, known
as test filtering, usually denoted by superscript ̂.

By analogy with the similarity models for the momentum
equation,8 we use the assumption of scale invariance in a strong,
almost literal sense. The full structure of the scalar field at scales be-
low � is postulated to be similar to the scales above �. This, through
the Leonard-like terms, provides us with the essential structure of

model terms. Thus, the following form of the model is proposed:

τi,φ ≈ cLi,φ (7)

where Li,φ is the Leonard term for scalar flux described earlier and
c is the scaling factor to be determined.

For the momentum equation, the observation that there exists a
high degree of correlation between the Leonard term and the cor-
responding subgrid term was observed for the case of a turbulent
jet.16 A good correlation was observed between the SGS stress ten-
sor τi j = ui u j − ūi ū j and the Leonard term Li j = ̂ūi ū j − ̂̄ui ̂̄u j , and
the model similar to approximation (7) was proposed. It was demon-
strated that this model captures backscatter in a reasonable manner
and that it scales correctly near solid boundaries. By employment
of a test filter size of �̂ = 2�, Li j was found to be of the same order
of magnitude as τi j ; therefore, c was assumed equal to unity.

For the proposed model form (7), the scaling factor c cannot be
readily determined dynamically, that is, with the Germano identity
(3), because the procedure becomes recursive. Therefore, an alter-
native approach must be found.

We propose the use the ratio of the subgrid variances on the
base and test level as a scaling factor c in form (7). The motivation
for this particular form is that the subgrid variance represents the
variance of the filtered probability density function (PDF).17 Thus,
the subgrid variance of a scalar can be regarded as a measure of
degree of resolution of the scalar field. This assumption, together
with the assumed scale invariance, yields the new class of LES
models. The structure of the unknown subgrid terms is provided
by corresponding Leonard terms, and the scaling factor should be
determined dynamically instead of being an a priori constant. In this
paper, we propose two models of this class, for the scalar subgrid
flux and dissipation terms.

The final form of the dynamic structure model for τi,φ can be
formulated as follows:

τi,φ ≈ (θφ/
φ̄)Li,φ (8)

where θφ = 1
2 (φφ − φ̄φ̄) is the subgrid variance of φ on the base

level, and 
φ̄ = 1
2 (

̂
φ̄φ̄ − ˆ̄φ ˆ̄φ) is the subgrid variance of φ̄ on the test

level.
Note that this model can be derived formally via the Germano

identity if, instead of the general form (7), we postulate

τi,φ ≈ ciθφ, Tı,φ ≈ ci (φ̂φ − ˆ̄φ ˆ̄φ) (9)

The assumption that ci varies slowly with space allows us to remove
ci from under the convolution integrals. Then, we can use Germano
identity (3) to determine that ci = Li,φ/
φ̄ , similar to dynamic struc-
ture models for the momentum equations.18

III. SGS Scalar Variance and Dissipation
The subgrid variance θφ cannot be determined from the resolved

field and, thus, has to be modeled. An extensive amount of work
has been conducted in the area of modeling θφ directly due to its
importance in the LES of the reacting flows.2,3,19,20 As an alternative,
it is possible to derive a transport equation for θφ (Ref. 12):

∂θφ

∂t
+ ∂ ūiθφ

∂xi
= ∂

∂xi

[
D

∂θφ

∂xi

]
− χφ − Cφ + φ̄

∂τi,φ

∂xi
(10)

Cφ = 1

2

∂

∂xi

[
φ2ui − φ2ūi

]
, χφ = D

[
∂φ

∂xi

∂φ

∂xi
− ∂φ

∂xi

∂φ

∂xi

]

(11)

where the triple correlation term Cφ and the subgrid dissipation term
χφ have to be modeled again. This is probably the reason why the
subgrid variance evolution equation is rarely used in the literature,
whereas the preference is given to separate modeling of subgrid
variance and scalar dissipation.20
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Note that our definition of subgrid variance and dissipation differ
from those found in the literature, where they are defined as φ2 − φ̄2

and (∂φ/∂xi )(∂φ/∂xi ), respectively. The form of θφ is chosen to cor-
respond to the form of SGS kinetic energy k = 1

2 (ui ui − ūi ūi ), and
the definition (11) is argued to reflect the effect of scalar dissipation
on scales less than � appropriately.

We can deal with the triple correlation term in Eq. (10) by using
the following series expansion21:

f g − f̄ ḡ = 2α[k]
∂ f̄

∂xk

∂ ḡ

∂xk
+ O

(
α2

k

)
(12)

Square brackets indicate that the indices do not participate in sum-
mation. Quantities αk are defined as

αk = 1

2

∫ ∞

−∞
x2

k G(x) dxk

If we apply the expansion (12) to the triple correlation term Cφ , we
obtain the following:

Cφ ≡ 1

2

∂

∂xi

[
2α[k]

∂ ūi

∂xk

∂φ2

∂xk
+ O

(
α2

k

)]

= 1

2

∂

∂xi

[
2α[k]

∂ ūi

∂xk

∂

∂xk

(
φ̄φ̄ + 2α[m]

∂φ̄

∂xm

∂φ̄

∂xm

+O
(
α2

m

)) + O
(
α2

k

)]

= 1

2

∂

∂xi

[
2α[k]

∂ ūi

∂xk

∂φ̄φ̄

∂xk
+ O

(
α2

k

)]

= ∂

∂xi

[
φ̄ · 2α[k]

∂ ūi

∂xk

∂φ̄

∂xk
+ O

(
α2

k

)]

= φ̄ · ∂

∂xi

[
2α[k]

∂ ūi

∂xk

∂φ̄

∂xk

]
+ ∂φ̄

∂xi
· 2α[k]

∂ ūi

∂xk

∂φ̄

∂xk
+ O

(
α2

k

)

Now we combine the obtained expansion with one for the last term
on the right-hand side of Eq. (10) to obtain the following:

φ̄ · ∂τi,φ

∂xi
− Cφ = φ̄

∂

∂xi

[
2α[k]

∂φ̄

∂xk

∂ ūi

∂xk
+ O

(
α2

k

)] − Cφ

= − ∂φ̄

∂xi
· 2α[k]

∂ ūi

∂xk

∂φ̄

∂xk
+ O

(
α2

k

) = − ∂φ̄

∂xi
· τi,φ + O

(
α2

k

)
Thus, Eq. (10) becomes

∂θφ

∂t
+ ∂ ūiθφ

∂xi
= ∂

∂xi

[
D

∂θφ

∂xi

]
− χφ − τi,φ

∂φ̄

∂xi
+ O(�4) (13)

Note that Eq. (10) is exact, whereas Eq. (13) contains modeling
assumptions. Moreover, the subgrid scalar dissipation χφ still has
to be modeled.

By analogy with approximation (8), we propose the use of the
following model for dissipation:

χφ ≈ 2(θφ/
φ)Lχ (14)

where

Lχ = D

[ ̂∂φ̄

∂xi

∂φ̄

∂xi
− ∂̂ φ̄

∂xi

∂̂ φ̄

∂xi

]

is the Leonard term for subgrid dissipation.
In the remainder of the paper, models (8) and (14) shall be referred

to as dynamic structure (DS) models, following the original work18

for subgrid momentum stresses.

IV. A Priori Evaluation
To evaluate the proposed model a priori, data from two types of

DNS were used.
First, data from DNS of a nonreacting mixing layer were used.22

The DNS was conducted with a high-order finite difference code
that employs the low Mach number approximation.23 The flow was
discretized by the use of a nonstaggered grid with dimensions of
481 × 241 × 39 in the streamwise, transverse, and spanwise direc-
tions, respectively. The Reynolds number based on the inlet vorticity
thickness and the freestream velocity difference was 200.

The second set of data is from DNS for nonreacting channel
and Couette flows (see Ref. 24). The grid size for both cases was
231 × 200 × 64 points, and the Reynolds number based on the chan-
nel half-width was chosen to be 3000 for both flows. Temperature
was taken as the passive scalar, and isothermal walls with a scaled
temperature difference of one were used.

Note that, overall, the results obtained from the DNS data for Cou-
ette and channel flows were very similar to ones obtained from the
mixing-layer DNS data; thus, only figures and statistics computed
from the mixing-layer data are shown.

The shape of both base and test filters were defined to be
triangular,18 and the models tested were taken from Eqs. (8) and
(14) with θφ calculated directly from the DNS results.

A. SGS Scalar Flux
Figures 1 and 2 show scatter plots of τ1,φ computed from the DNS

data for the mixing layer vs the values of models computed from
the filtered DNS field.

Fig. 1 Scatter plot of τ1,φ computed from DNS vs model for DS and
viscosity models.

Fig. 2 Scatter plot of τ1,φ computed from DNS vs model for DS and
similarity models.
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Figure 1 compares the DS model with the most popular viscosity-
type model τi,φ ≈ Cs�

2|Si j |∂φ̄/∂xi , where S̄i j = 1/2(∂ ūi/∂x j +
∂ ū j/∂xi ). Figure 2 compares the DS model with the similarity model
τi,φ ≈ L ı,φ . The ratio of the base to test filter size for the viscosity
and similarity models was chosen to obtain the peak performance
of both models, whereas for the DS model, the test filter size was
always equal to the base filter size. Namely, if we denote the DNS
grid cell size by �g in Fig. 1, for the viscosity model, � = 8�g

and �̂ = 14�g; for the DS model, �̂ = � = 8�g . In Fig. 2, for
the similarity model, � = 6�g and �̂ = 8�g; for the DS model,
�̂ = � = 6�g .

From Fig. 1 it is clear that the assumption on which the viscosity
model is built, that τiφ scales well with �2|Si j |∂φ̄/∂xi , does not hold
well. In the remainder of the paper, comparisons will be restricted
to the DS and similarity models only.

Because no apparent difference between the two models could
be seen on the scatter plot in Fig. 2, we employed an approach that
seemed more informative, finding statistical characteristics of the
relative error for a given model. The relative error is defined as

E = [(τi,φ)model − τi,φ]/τi,φ

and is evaluated with the τi,φ computed from the DNS field. Figure 3
shows the PDF for relative errors of the two models. From Fig. 3,
the advantage of the DS model is apparent.

Figure 4 shows the results of evaluation of the DS and simi-
larity models under more strenuous conditions, namely, a highly
nonisotropic filter. The base filter dimensions were chosen to be
6�g × 14�g × 10�g . Again, different test filter sizes were em-
ployed for each model to capture the peak performance for the
given base filter: 6�g × 14�g × 10�g for the DS model and
10�g × 20�g × 16�g for the similarity model. From Fig. 4, it is ap-
parent that the DS model performs better than the similarity model.

In addition, we varied base and filter sizes to investigate the be-
havior of the DS and similarity models for different degrees of re-
solvness, filter skewness, and test to base filter size ratio. The PDF of
relative error was found for every case, and statistical characteristics
were computed. The results are listed in Tables 1 and 2.

Both Tables 1 and 2 have 22 cases. The first 15 examine the
behavior of the DS model with respect to the base filter size and
the ratio of �̂ to �. The last six rows deal with irregularly shaped
filters.

These results lead to a conclusion that the overall performance of
the DS model seems very satisfactory compared to other known
models. A traditional model (the similarity model) was evalu-
ated as well, its performance being best for a ratio of �̂ to � of

Table 1 Statistical characteristics of the PDF of relative error for the DS model (8) for τ1,φ, mixing layer DNS dataa

Run Base Test Mean Standard deviation Median

1 4 × 4 × 4 4 × 4 × 4 0.537e−01 0.992e+00 0.401e−01
2 4 × 4 × 4 6 × 6 × 6 −0.199e−01 0.134e+01 0.746e−02
3 4 × 4 × 4 8 × 8 × 8 −0.602e−01 0.179e+01 −0.278e−01
4 4 × 4 × 4 10 × 10 × 10 −0.827e−01 0.223e+01 −0.615e−01
5 4 × 4 × 4 14 × 14 × 14 −0.101e+00 0.292e+01 −0.116e+00
6 6 × 6 × 6 6 × 6 × 6 0.124e+00 0.198e+01 0.883e−01
7 6 × 6 × 6 8 × 8 × 8 0.797e−01 0.230e+01 0.756e−01
8 6 × 6 × 6 10 × 10 × 10 0.543e−01 0.273e+01 0.584e−01
9 6 × 6 × 6 14 × 14 × 14 0.281e−01 0.347e+01 0.198e−01
10 8 × 8 × 8 8 × 8 × 8 0.178e+00 0.279e+01 0.123e+00
11 8 × 8 × 8 10 × 10 × 10 0.147e+00 0.300e+01 0.119e+00
12 8 × 8 × 8 14 × 14 × 14 0.109e+00 0.356e+01 0.982e−01
13 10 × 10 × 10 10 × 10 × 10 0.203e+00 0.315e+01 0.141e+00
14 10 × 10 × 10 14 × 14 × 14 0.156e+00 0.345e+01 0.134e+00
15 14 × 14 × 14 14 × 14 × 14 0.174e+00 0.339e+01 0.146e+00
16 6 × 14 × 6 6 × 14 × 6 0.196e+00 0.280e+01 0.151e+00
17 6 × 6 × 14 6 × 6 × 14 0.150e+00 0.342e+01 0.635e−01
18 14 × 6 × 6 14 × 6 × 6 0.184e+00 0.310e+01 0.130e+00
19 6 × 10 × 14 6 × 10 × 14 0.171e+00 0.305e+01 0.105e+00
20 6 × 14 × 10 6 × 14 × 10 0.222e+00 0.321e+01 0.162e+00
21 14 × 6 × 10 14 × 6 × 10 0.183e+00 0.343e+01 0.131e+00
22 6 × 14 × 10 10 × 20 × 14 0.145e+00 0.332e+01 0.127e+00

aBase and test columns refer to the base and test filter sizes in terms of DNS grid cell size �g .

Fig. 3 PDFs of the relative errors for the DS and similarity models for
the subgrid transport term τ1,φ.

Fig. 4 PDFs of the relative errors for the DS and similarity models for
the subgrid transport term τ1,φ; filter shape corresponds to entry 20 in
Table 1.
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Table 2 Statistical characteristics of the PDF of relative error for the similarity model for τ1,φ,
mixing layer DNS dataa

Run Base Test Mean Standard deviation Median

1 4 × 4 × 4 4 × 4 × 4 −0.108e+00 0.747e+00 −0.120e+00
2 4 × 4 × 4 6 × 6 × 6 0.131e+01 0.358e+01 0.106e+01
3 4 × 4 × 4 8 × 8 × 8 0.307e+01 0.905e+01 0.225e+01
4 4 × 4 × 4 10 × 10 × 10 0.497e+01 0.166e+02 0.332e+01
5 4 × 4 × 4 14 × 14 × 14 0.862e+01 0.346e+02 0.505e+01
6 6 × 6 × 6 6 × 6 × 6 −0.178e+00 0.132e+01 −0.228e+00
7 6 × 6 × 6 8 × 8 × 8 0.530e+00 0.341e+01 0.293e+00
8 6 × 6 × 6 10 × 10 × 10 0.138e+01 0.677e+01 0.803e+00
9 6 × 6 × 6 14 × 14 × 14 0.326e+01 0.166e+02 0.167e+01
10 8 × 8 × 8 8 × 8 × 8 −0.248e+00 0.144e+01 −0.318e+00
11 8 × 8 × 8 10 × 10 × 10 0.201e+00 0.292e+01 −0.151e−01
12 8 × 8 × 8 14 × 14 × 14 0.129e+01 0.802e+01 0.538e+00
13 10 × 10 × 10 10 × 10 × 10 −0.321e+00 0.145e+01 −0.401e+00
14 10 × 10 × 10 14 × 14 × 14 0.345e+00 0.401e+01 −0.266e−01
15 14 × 14 × 14 14 × 14 × 14 −0.460e+00 0.122e+01 −0.562e+00
16 6 × 14 × 6 6 × 14 × 6 −0.140e+00 0.172e+01 −0.262e+00
17 6 × 6 × 14 6 × 6 × 14 −0.541e+00 0.101e+01 −0.582e+00
18 14 × 6 × 6 14 × 6 × 6 −0.264e+00 0.146e+01 −0.319e+00
19 6 × 10 × 14 6 × 10 × 14 −0.483e+00 0.108e+01 −0.558e+00
20 6 × 14 × 10 6 × 14 × 10 −0.264e+00 0.157e+01 −0.379e+00
21 14 × 6 × 10 14 × 6 × 10 −0.376e+00 0.143e+01 −0.432e+00
22 6 × 14 × 10 10 × 20 × 14 0.613e+00 0.482e+01 0.535e−01

aBase and test columns refer to the base and test filter sizes in terms of DNS grid cell size �g .

Fig. 5 Scatter plot of instantaneous values of χφ and its models, DS
model (14) and momentum-based model,12 for the case ∆ = ∆̂ = 7∆g,
where ∆g is the DNS grid cell size.

approximately 1.2. The peak performance of the DS model is ob-
served for the cases of �̂ = �. Overall, for the DS model, the mean
value of the relative error stays within 20%, and the median stays
within 15%, even for the filters with large degree of skewness (the
last six entries in Table 1). The similarity model does not exhibit
such robust behavior, as can be seen from Table 2.

B. SGS Scalar Dissipation
The DS model (14) for scalar dissipation (11) was compared to

one of the recent LES models found in the literature12:

χ̄ ≡ D
∂φ

∂xi

∂φ

∂xi
≈ C · ε

k
· θφ (15)

where ε = ν(∂ui/∂x j ∂ui/∂x j ) is the filtered kinetic energy dissi-
pation rate. This model, although criticized in literature, was chosen
for comparison due to its simplicity, relatively good performance,
and nondependence on spectral formulation, which broadens the
applicability range.

The results of the comparison are presented in Figs. 5 and 6,
the scatter plot and the PDF of relative error, respectively. The

Fig. 6 PDF of relative error for the DS model for χφ and the
momentum-based model for χφ

12; for the DS model, the base and test
filter sizes are ∆ = ∆̂ = 7∆x, and DNS data for nonreacting mixing
layer was used.

quantity that was modeled by the use of both approaches was
χφ = χ̄ + D(∂φ̄/∂xi ∂φ̄/∂xi ). Figure 5 does not seem to give any
definite comparison, but from Fig. 6, the advantage of DS model is
clear.

To investigate the sensitivity of the DS model for scalar dissipa-
tion (14) to the ratio �̂/� and to the base filter size and shape, we
computed the PDF of relative error for various cases. Similar to the
DS model for the flux term, the peak performance of the model is
observed for the ratio �̂/� close to 1, and the mean relative error
stayed within 20%.

V. A Posteriori Evaluation
Although the a priori test is significant, a more complete a poste-

riori test should be administered to validate the model’s capability of
predicting a time-evolving flow. Thus, a comparison of the DNS and
LES is made for the case of a nonreacting incompressible mixing
layer.

The DNS validation case was simulated with a finite differ-
ence nondissipative code that is 11th-order accurate in space
and fifth-order accurate in time. A thorough accuracy study was
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Table 3 L2 norm of error in the velocity field
for three different orders of accuracy22

N a 3rd-order 5th-order 7th-order

30 1.0e−2 1.0e−3 2.0e−4
60 1.5e−3 2.0e−5 1.5e−6
90 1.2e−4 1.5e−6 3.0e−7

a N is number of grid points in each direction.

Fig. 7 Comparison of the 1% scalar difference mixing-layer width
obtained from DNS22 and LES runs.

performed by comparison of the velocity field to an analytical so-
lution for evolution of Taylor vortex in uniform flow with Re = 106

(Ref. 22). A brief summary of validation results is given in the
Table 3. Overall, the desired accuracy is maintained for each grid
density.

An LES of a nonreacting incompressible mixing layer was per-
formed with the same setup as the DNS, and the same DNS code
adapted for LES calculations. The grid spacing was chosen to be
roughly four times larger than the DNS in each direction. The base
filter size, however, did not coincide with the grid cell size, but the
characteristic length of the base filter was chosen to be 4�g , where
�g is the LES grid cell size. That was done to minimize the fi-
nite differencing LES error while keeping the computational cost
bearable.25 The test filter size was equal to the base filter size, that
is, �̂ = �.

Figure 7 presents the rate of growth of the mixing layer found with
the 1% scalar difference found from DNS and LES. The growth rate
in LES was found to be close to linear, as predicted by DNS and
generally found in the literature.22,26,27 LES and DNS mixing layer
widths demonstrated by Fig. 7 have the same linear growth rate and
differ only by the placement of virtual origin.

The following expression can be taken as an approximation for
the growth rate26:

δ/x = Cδ[(1 − r)/(1 + r)] (16)

where δ is the 1% passive scalar thickness, x is the distance down-
stream, r is the velocity ratio, and Cδ is the growth rate constant.
The value of Cδ has been found to be in the range of 0.25, . . . , 0.45
by a collection of experimental studies.22 Given the current veloc-
ity ratio r = 1/3, the approximate value of Cδ computed from the
LES is 0.4554, which belongs to the admissible range. The DNS
prediction of the value of Cδ was 0.422.

The examination of the self-similarity of the scalar field in
the mixing layer is presented in Figs. 8 and 9. The profiles of
the scalar mean and rms values were computed at various dis-
tances downstream and then plotted vs the self-similarity variable
η = (y − L/2)/δ, where y is the transverse coordinate, L is the
domain width in the transverse direction, and δ is the 1% pas-

Fig. 8 Self-similarity of the mean scalar field in the LES mixing layer.

Fig. 9 Self-similarity of the RMS value of the scalar field in the LES
mixing layer.

sive scalar thickness defined earlier. As can be seen from Figs. 8
and 9, neither mean nor rms values exhibit the self-similar be-
havior that indicates that the mixing layer is not yet fully de-
veloped and is still in transition. This agrees well with the DNS
results.22

We compared the mean temperature profiles near the end of the
computational domain (Fig. 10). Note that both profiles have a small
but distinguishable bump slightly below the center of the compu-
tational domain. This distortion in the mean temperature profile
indicates that the center of the layer is better mixed by the spanwise
vortical structures. This gives a more homogeneous temperature in
the center of the layer. Similar phenomena were observed in ex-
perimental work27 where a scalar profile like this was seen as an
indication of a nonmarching PDF.

Finally, we compared the variance of the scalar as a function of y,
the transverse coordinate. This is done by fixing the x (streamwise)
coordinate, finding the variance var(φ) ≡ 〈φ2〉 − 〈φ〉2, and averag-
ing it in the z (spanwise) direction. The angle brackets indicate the
ensemble averaging.

The quantities compared in the Fig. 11 are var(φ) = 〈φφ〉 −
〈φ〉〈φ〉 obtained from the DNS data for the mixing layer, var(φ̄)
obtained from the LES data, and var(φ̄) + 2〈θφ〉 = 〈φφ〉 − 〈φ̄〉〈φ̄〉
obtained from LES data. The last quantity is assumed to be close to
var(φ), that is, the difference between 〈φ〉〈φ〉 and 〈φ̄〉〈φ̄〉 is assumed
to be small.

The x (streamwise) coordinate was different for DNS and LES
statistics: x = 110 for DNS and x = 100 for LES. This was motivated
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Fig. 10 Comparison of the mean scalar profile at x = 110 between DNS
and LES results.

Fig. 11 Variance of the scalar as a function of transverse coordinate;
comparison between LES and DNS results.

by the fact that the distance between the virtual origins of DNS and
LES shear layers was found to be approximately 10 units. Virtual
origins were found with the linear fits for growth rates displayed in
Fig. 7.

From Fig. 11, it is apparent that the comparison between DNS and
LES results is good. Moreover, Fig. 11 demonstrates the importance
of the subgrid scalar variance. Indeed, it contributed as much as 40–
45% to the total scalar variance.

Overall, the agreement of the LES and DNS data was found to be
good. The LES predicted the scalar field characteristics well.

VI. Conclusions
Two new models for the LES subgrid scalar flux term and the

subgrid scalar dissipation were proposed. The models are considered
to be of a new class of LES models, namely, dynamic structure (DS)
models. The models were evaluated with DNS data and found to
represent the effects of the subgrid scalar field on the resolved scalar
field adequately. Also, models found in the literature were evaluated
by the use of the same set of data for the purpose of comparison to
the DS models. The DS models were found to perform better.

To evaluate the DS models a posteriori, an LES of a nonreact-
ing mixing layer was performed with both models, and the re-
sults showed a good agreement with the DNS run performed for
the same setup. The subgrid scalar variance was found to con-
tribute a significant part to the total scalar variance found from DNS
data.

The DS models seem to perform well under various conditions,
including different base filter sizes, various degrees of skewness,
and ratios of the base to the test filter sizes. The peak performance
of the DS models was observed for the case when base and test filter
sizes were equal.
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