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We use direct numerical simulation of forced homogeneous isotropic turbulence with 2563 and 5123

grid points and Reynolds number based on Taylor microscale up to 250 to examine a priori the
scaling properties of the subgrid-scale kinetic energy and its dissipation rate. It is found that the two
quantities are strongly correlated and a power-law scaling assumption holds reasonably well.
However, the scaling exponent, which was assumed to be weakly varying in previous studies, is
found to change considerably with the filter characteristic width. © 2007 American Institute of
Physics. #DOI: 10.1063/1.2735001$

In the large eddy simulation !LES", the large-scale fea-
tures of the flow are resolved directly via a numerical scheme
while the effect of the unresolved scales of motion is ac-
counted for by using subgrid-scale !SGS" models.1 From the
point of view of LES model development, the statistical in-
formation about behavior of the small-scale flow quantities is
of great importance, for it can be used to verify the underly-
ing assumptions of existing SGS models and provide con-
straints that have to be satisfied by the ones currently in
development.2–5

The governing equations for LES are obtained by apply-
ing a filtering procedure to the Navier-Stokes equations. In
this study, we consider the incompressible case,
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Here ūi=ui!G is the filtered velocity, P= p /# is the modified
pressure, ! is the kinematic viscosity, and "ij =uiuj − ūiūj is
the SGS stress tensor, which has to be modeled. Summation
over repeated indices is implied. The filter kernel G is as-
sumed to be non-negative and satisfy %G%1=1.

To solve Eqs. !1" and !2" numerically, one needs to have
a model for "ij. A sizable fraction of models for "ij in the
current literature, referred to as one-equation models, employ
the SGS kinetic energy ks="ii /2 for modeling "ij: as a part of
scalar eddy viscosity,6–8 tensor eddy viscosity9 or a particular
scaling factor.10–12 To obtain ks, one needs to solve an auxil-
iary transport equation,
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Here $=−"ijS̄ij is the term responsible for the energy trans-
fer between resolved and subgrid scales !energy transfer
term"; S̄ij =

1
2 !"ūi /"xj +"ūj /"xi" is the resolved strain-rate ten-

sor; Qi is the flux of ks due to inertial and pressure terms,

which is usually modeled using an eddy-viscosity ansatz, and
%s is the dissipation rate of ks given by
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The quality of models for "ij and %s is crucial for main-
taining the correct energy budget in LES. While modeling "ij
is responsible for the correct energy transfer between the
resolved and subgrid scales and is ultimately responsible for
the stability of LES calculations that employ zero-equation
models, the model for %s plays the same role in LES calcu-
lations with one-equation models. Usually modeling of %s is
dealt with by using
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where & is the characteristic filter width !usually the size of
the LES grid cell" and Ck is either given a fixed value Ck
=1.0 or determined dynamically.6–8,13 This model relies on
the assumption that for a fixed &, %s scales as ks

3/2.
In general, the power-law scaling %s)ks

' has been indeed
observed, e.g., in experimental measurements in an atmo-
spheric boundary layer14 or in a hyperviscous turbulence
simulation.15 The former study reports the scaling exponent
' to be close to 1 while the latter claims that '=2/3 as a
consequence of the fact that Kolmogorov’s refined similarity
hypothesis16 holds not only for velocity differences, as origi-
nally formulated, but for other inertial range quantities as
well. In another study,12 it was observed that '(1/2 gave
the most plausible results in the a priori tests in terms of
collapse of the probability density functions !PDFs" of the
constant C% in the scale-similarity type model for %s,

!6"

Here Lij = ūiū ĵ − û̄iû̄ j is the Leonard term for "ij and !·"ˆ de-
notes the test-filtering operation.

The purpose of this Brief Communication is to conduct a
priori testing of the assumption %s)ks

' using large-scale
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tests provides us with the physical insight that can be used in
model development for %s, which is believed to be of interest
to both engineering and scientific LES communities.

The incompressible Navier-Stokes equations were
solved in a periodic box with sides of length L=2( and N
grid points in every direction. A standard pseudospectral al-
gorithm was used, fully dealiased by a combination of
spherical truncation and phase shifting.17,18 The turbulence is
sustained by a deterministic forcing term.19 Two sets of data
are used in this study: Set 1 with N=256, !=1/900 and set 2
with N=512, !=1/1800.

The condition kmax)*1.1 was satisfied for all times to
ensure that all important flow scales are resolved.20 For set 2,
a stronger condition kmax)*1.4 was satisfied. Here kmax
=N*2/3 is the maximum significant wave number resolved
by the grid, and ) is the Kolmogorov length scale. The flow
was initialized using velocity components with Gaussian dis-
tribution and random phases. Forcing was turned on and the
flow was allowed to develop for approximately 10 turnover
times, and after that the snapshots of the flow field were
taken. The consecutive snapshots were separated by the time
slightly larger than the eddy-turnover time so the data are
assumed to be temporally uncorrelated. The average Rey-
nolds number based on the Taylor microscale was R+(185
for set 1 and R+(250 for set 2. Set 1 contains 120 snapshots
taken from three realizations with different random number
seeds, and set 2 contains 108 snapshots taken from four dif-
ferent realizations. To obtain resolved and SGS quantities,
we used Gaussian filters with characteristic widths & loga-
rithmically spaced from 0.074 to 3.0 !(7) , . . . ,312)" for set
1 and from 0.04 to 3.0 !(7) , . . . ,526)" for set 2.

First we show that the SGS dissipation %s plays an im-
portant role in the energy budget. To demonstrate this, we
plot in Fig. 1 the value of +%s /%!, versus the SGS Reynolds
number defined as R&=*ks& /!. Here, %!=!!"ui /"xj"
,!"ui /"xj" is the pseudodissipation; the angular brackets de-
note the averaging across the entire domain and over the
snapshots. It can be seen that +%s /%!, exhibits a logarithmic

dependence on R& for small R& !approximately R&-100"
and for R&.200 the SGS dissipation contributes more than
90% to the total energy dissipation. Thus %s plays a crucial
role in overall energy budget.

Let us denote a= !ln ks− +ln ks," //k and b= !ln %s

− +ln %s," //k, where /k
2 is the variance of !ln ks". Angular

brackets denote averaging over the entire domain. In our
simulations, the probability density function !PDF" of ks ap-
pears to be very close to log-normal and thus a is very close
to being a standard normal random variable. By plotting the
conditional average +b -a,, averaged over all snapshots, we
can recover ' in %s)ks

' as the slope of the graph.
We begin by plotting +b -a, for both sets of data in Fig. 2.

In each panel, each curve corresponds to a filter of different
characteristic width &, ordered in ascending order. Each sub-
sequent curve is shifted by 0.25 up to facilitate comparison.

It is evident that for all considered filter sizes, %s and ks
appear to be strongly correlated and the conjecture %s)ks

'

holds reasonably well. For & comparable to the Kolmogorov

FIG. 1. Fraction of the dissipation represented by %s. Dependence on the
SGS Reynolds number.

FIG. 2. The conditional averages +b -a,. The dashed lines have slopes of 1
!lower" and 1/2 !upper". The solid curves correspond to different filter width
&; each subsequent curve is shifted up by 0.25 to facilitate comparison. !a"
Data set 1; !b" data set 2.
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length scale ) !lower lines in Fig. 2", the scaling exponent '
is close to 1. This filter size falls outside of the range re-
ported in previous studies.14,15 The scaling can be understood
using the following argument. For & close to ), using
Leonard expansion,21 we can argue that
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because the Taylor series approximation for 0u for & /) close
to 0 gives 0u)&. On the other hand, ks="ii /2 and "!&"
)!0u"2, as analytically shown by Eyink.22 Here " is the mag-
nitude of "ij and 0u is the magnitude of the velocity incre-
ment over the separation length &. Thus both ks and %s scale
as !0u"2 for & in the near-viscous scale range.

For larger &, the scaling %s)ks
' still appears to hold

reasonably well for the bulk of data !the area -a--2 corre-
sponds to about 95% of the data". The slopes of the graphs
diminish as & grows but there is no indication of any pre-
ferred value of '. We plot the slopes extracted from both sets
of data in Fig. 3; error bars denote the variance of ' for each
value of &. The slopes span the range between approxi-
mately 1/2 and 1 without a noticeable plateau in the inertial
range.

It should be noted that the curves in Fig. 2 are system-
atically concave downward with the exception of the lowest
curve in both panels. This indicates that a simple power law
%s)ks

' does not hold exactly in the inertial subrange. How-
ever, taking into account the relatively narrow dispersion of
data in Fig. 3, it can be concluded that the power law pro-
vides an approximation to the correlation between %s and ks
that is reasonable enough to be used successfully in SGS
modeling.

When plotted against the SGS Reynolds number R&, the
slopes from different datasets do not collapse to a single
curve !not shown". However, when plotted against the filter
width & as in Fig. 3, the mean values of ' almost coincide
for two sets of data. This, in our opinion, indicates that '

might depend more on the ratio of & to the length scale of
forcing than on the SGS Reynolds number. To illustrate the
difference in R& between the two datasets, we plot R& versus
& in Fig. 4. The classical scaling R&)&4/3 is observed.20 The
values of R& for set 2 are about twice as large as those for set
1. This is explained by the fact that the only difference
between 2563 and 5123 simulations is the value of ! while
everything else including magnitude of forcing is kept intact.
Thus, according to our data, in the inertial range the values
of ' change from 0.5 to 0.9, ' is close to 1 in the near-
viscous scale range, and ' appears to depend more on & than
R&.

In conclusion, we found through direct numerical simu-
lations of forced isotropic turbulence that the scaling as-
sumption %s)ks

' holds reasonably well for SGS Reynolds
number R& of up to 5000. However, the value of ' was not
found to be constant, as was assumed in previous studies by
various authors,11,14,15 but rather to depend on the proximity
of the LES filter size & to the forcing length scale. None of
the observed scalings are close to %s)ks

3/2, which is widely
used in the current literature. We found ' to be close to 1/2
for & close to forcing scale, which corresponds to results by
Chumakov and Rutland;12 for & in the near-viscous range,
the value of ' is close to 1, in accordance with Meneveau
and O’Neal.14 In the inertial range for both data sets, ' varies
between 0.6 and 0.9 monotonically with &. The data from
hyperviscous simulations15 fall in this range with '=2/3. It
should be noted that we do not see a visible plateau at '
(2/3, as would be expected based on the refined similarity
hypothesis.
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Center for Nonlinear Studies at LANL. Coyote and QSC
supercomputers at LANL were used via an Institutional
Computing grant. The author is thankful to C. Meneveau for
useful discussions and to D. Livescu for a version of DNS
code. The author is indebted to the anonymous reviewer for

FIG. 3. Dependence of the average slope of +b -a, on the filter width &.
Error bars give the variance of the data.

FIG. 4. Scaling of SGS Reynolds number R& with &. Lower points
correspond to set 1, higher points to set 2. The solid line represents the
scaling &4/3.
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